INDIAN STATISTICAL INSTITUTE
 Probability Theory II: B. Math (Hons.) I
 Semester II, Academic Year 2023-24
 Midsem Exam

Date: 20/02/2024
Full Marks: 50
Duration: 3 hours

- Show all your work and write explanations when needed. If you are using a result stated and/or proved in class, please quote it correctly.
- You are NOT allowed to use class notes, books, homework solutions, list of theorems, formulas etc.

1. A random variable X is said to follow Laplace distribution with parameters $\mu \in \mathbb{R}$ and $\tau \in(0, \infty)$ (denoted by $X \sim \operatorname{Laplace}(\mu, \tau)$) if X has a probability density function

$$
f_{X}(x)=\frac{1}{2 \tau} \exp \left(-\frac{|x-\mu|}{\tau}\right), \quad x \in \mathbb{R} .
$$

(a) (10 marks) Write down, with proper justification, an algorithm to simulate a random variable

$$
Z \sim \operatorname{Laplace}(0,1)
$$

(b) $(10+2=12$ marks) If $Z \sim \operatorname{Laplace}(0,1)$, find a probability density function of $W:=1-e^{-|Z|}$. What distributions does W follow?
2. Suppose (X, Y) is a uniformly chosen point from the region

$$
\Delta:=\left\{(x, y) \in \mathbb{R}^{2}:|x|<1-y, y>0\right\} .
$$

(a) (2 marks) Write down a joint probability density function of (X, Y).
(b) (6 marks) Compute a marginal probability density function of X.
(c) (6 marks) Compute a marginal probability density function of Y.
(d) (6 marks) Calculate the cumulative distribution function of

$$
V:=|X|+|Y| .
$$

(e) (6 marks) Compute a probability density function of V.
(f) (2 marks) Are X and Y independent? Justify your answer.

